Two coupled matrices: eigenvalue correlations and spacing functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 277793
(http://iopscience.iop.org/0305-4470/27/23/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:20

Please note that terms and conditions apply.

Two coupled matrices: eigenvalue correlations and spacing functions

Madan Lal Mehta \dagger and Pragya Shukla
SPhF \ddagger, CE de Saclay, Gif-sur-Yvette Cedex, France

Received 7 April 1994, in final form 25 August 1994

Abstract

For two $n \times n$ Hermitian matrices A and B, with joint probability density proportional to $\exp [-\operatorname{tr}\{U(A)+V(B)+2 c A B]]$, where U and V are polynomials, a method is given to calculate all correlation, cluster and spacing functions of the eigenvalues of either one or both matrices. The method relies on the introduction of two sets of bi-orthogonal polynomials with non-local weights. In a linear chain of coupled matrices, if one looks for the statistical properties of the eigenvalues of only one matrix (two matrices), situated anywhere in the chain, then we can proceed as a one-matrix (two-matrices) problem.

1. Introduction

It is known that the joint probability density $\exp (-\operatorname{tr} U(A))$ for the elements of a (real symmetric, Hermitian or quaternion real self-dual) matrix A gives rise to the joint probability density [1]

$$
\begin{equation*}
F(x)=f_{\mathrm{t}} \exp \left\{-\sum_{j=1}^{n} U\left(x_{j}\right)\right\}|\Delta(x)|^{\beta} \tag{1.1}
\end{equation*}
$$

for its real eigenvalues x_{1}, \ldots, x_{n}. In equation (1.1), f_{1} is a normalization constant

$$
\begin{equation*}
\Delta(x)=\prod_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right) \tag{1.2}
\end{equation*}
$$

and $\beta=1,2$ or 4 depending on whether A is real symmetric, Hermitian or quaternion real self-dual. From equation (1.1), one can compute the m-point correlation function

$$
\begin{equation*}
R_{m}\left(x_{1}, \ldots, x_{m}\right)=\frac{n!}{(n-m)!} \int F(x) \mathrm{d} x_{m+1} \ldots \mathrm{~d} x_{n} \tag{1.3}
\end{equation*}
$$

by introducing appropriate orthogonal or skew-orthogonal polynomials [2]. Here, and in what follows, all the integrals will be taken from $-\infty$ to ∞ unless explicitly indicated otherwise. For two coupled matrices A and B with joint probability density

$$
\begin{equation*}
\exp [-\operatorname{tr}\{U(A)+V(B)+2 c A B\}] \tag{1.4}
\end{equation*}
$$

[^0]for their elements, the joint probability density for their eigenvalues is known only in the case when A and B are Hermitian matrices [3-5]. It is
\[

$$
\begin{equation*}
F(x ; y)=f_{2} \exp \left\{-\sum_{j=1}^{n}\left\{U\left(x_{j}\right)+V\left(y_{j}\right)\right\}\right\} \operatorname{det}\left[\mathrm{e}^{-2 c x_{i} y_{j}}\right] \Delta(x) \Delta(y) \tag{1.5}
\end{equation*}
$$

\]

where x_{1}, \ldots, x_{n} are the eigenvalues of A and y_{1}, \ldots, y_{n} are those of B. The factor f_{2} is again a normalization constant.

For some applications, it may be of interest to calculate the correlation functions [6]

$$
\begin{equation*}
R_{p, q}\left(x_{1}, \ldots, x_{p} ; y_{1}, \ldots, y_{q}\right)=\frac{n!}{(n-p)!} \frac{n!}{(n-q)!} \int F(x ; y) \mathrm{d} x_{p+1} \ldots \mathrm{~d} x_{n} \mathrm{~d} y_{q+1} \ldots \mathrm{~d} y_{n} \tag{1.6}
\end{equation*}
$$

where $0 \leqslant p, q \leqslant n$. The case $p=q=0$, giving constant normalization, can be disposed of by introducing orthogonal polynomials with non-local weight [4]. The same method works when p or $q=0$. The correlation function $R_{p, 0}\left(x_{1}, \ldots, x_{p}\right)$ is a $p \times p$ determinant from which the cluster function immediately follows. The probability $E(r, I)$ that an interval I contains exactly r eigenvalues of matrix A (the eigenvalues of B being unobserved) is given as the r th partial derivative of an $n \times n$ determinant. Taking the limit $n \rightarrow \infty$ is straightforward provided one knows the corresponding limit for the orthogonal polynomials.

We will consider here the more difficult case $p>0, q>0$. Our method works for general p and q, but we do not have a compact manageable form. The method gets progressively more tedious as p and q increase. We will explicitly give the functions $R_{p, q}$ for $p, q \leqslant 2$. The situation is much simpler for the probability $E\left(r, I_{1} ; s, I_{2}\right)$ that an interval I_{1} contains exactly r eigenvalues of matrix A and an interval I_{2} contains exactly s eigenvalues of matrix B. It is given as a certain partial derivative of an $n \times n$ determinant. Taking the limit $n \rightarrow \infty$ is again straightforward.

In a linear chain of several coupled matrices, if one considers the correlations or spacing functions of the eigenvalues of one particular matrix, disregarding the eigenvalues of all the other matrices, then their formal structure is the same as those in the one-matrix case. If one considers mixed correlations for the eigenvalues of any two matrices in the chain, disregarding the eigenvalues of all the others matrices, then their formal structure is the same as those for eigenvalues of two coupled matrices.

2. Orthogonal polynomials with non-local weight

Let us indicate briefly how one can evaluate integral (1.6) when either p or $q=0$. Let $q=0$. As the integration is performed over all variables y_{t}, \ldots, y_{n} and as det $\left[\mathrm{e}^{-2 c x_{i} y_{j}}\right]$ and $\Delta(y)$ are both antisymmetric under the exchange of any two of the variables y_{j}, we can replace $\operatorname{det}\left[\mathrm{e}^{-2 c x_{1} y_{y}}\right]$ by its diagonal term. Thus

$$
\begin{align*}
R_{p, 0}\left(x_{1}, \ldots, x_{p}\right) & \propto \int \exp \left\{-\sum_{j=1}^{n}\left(U\left(x_{j}\right)+V\left(y_{j}\right)\right)\right\} \operatorname{det}\left[\mathrm{e}^{-2 c x_{1} y_{1}}\right] \\
& \times \Delta(x) \Delta(y) \mathrm{d} x_{p+1} \ldots \mathrm{~d} x_{n} \mathrm{~d} y_{1} \ldots \mathrm{~d} y_{n} \tag{2.1}\\
= & n!\int \prod_{j=1}^{n} w\left(x_{j}, y_{j}\right) \Delta(x) \Delta(y) \mathrm{d} x_{p+1} \ldots \mathrm{~d} x_{n} \mathrm{~d} y_{1} \ldots \mathrm{~d} y_{n} \tag{2.2}
\end{align*}
$$

where

$$
\begin{equation*}
w(x, y)=\exp (-U(x)-V(y)-2 c x y) \tag{2.3}
\end{equation*}
$$

Now, as usual,

$$
\begin{equation*}
\Delta(x)=\operatorname{det}\left[x_{i}^{j-i}\right] \propto \operatorname{det}\left[P_{j-1}\left(x_{i}\right)\right] \tag{2,4}
\end{equation*}
$$

where $P_{j}(x)=k_{j} x^{j}+\cdots, k_{j} \neq 0$ is any polynomial of degree j. Similarly

$$
\begin{equation*}
\Delta(y)=\operatorname{det}\left[y_{i}^{j-1}\right] \propto \operatorname{det}\left[Q_{j-1}\left(y_{i}\right)\right] \tag{2.5}
\end{equation*}
$$

where $Q_{j}(x)=k_{j}^{\prime} x^{j}+\cdots, k_{j}^{\prime} \neq 0$ is any polynomial of degree j. Choose polynomials $P_{j}(x)$ and $Q_{j}(x)$ such that

$$
\begin{equation*}
\int w(x, y) P_{j}(x) Q_{k}(y) \mathrm{d} x \mathrm{~d} y=\delta_{j, k} \tag{2.6}
\end{equation*}
$$

This is possible provided that the matrix of moments $\left[\int w(x, y) x^{j} y^{k} \mathrm{~d} x \mathrm{~d} y\right]_{j, k=0, \ldots, m}$ is nonsingular for all $m \geqslant 0$.

Let us define

$$
\begin{equation*}
\bar{Q}_{k}(x)=\int w(x, y) Q_{k}(y) \mathrm{d} y \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{align*}
& \int \prod_{j=1}^{n} w\left(x_{j}, y_{j}\right) \Delta(x) \Delta(y) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{n} \\
& \quad \propto \operatorname{det}\left[P_{j-1}\left(x_{i}\right)\right] \int \prod_{j=1}^{n} w\left(x_{j}, y_{j}\right) \operatorname{det}\left[Q_{j-1}\left(y_{i}\right)\right] \mathrm{d} y_{1} \ldots \mathrm{~d} y_{n} \\
& \quad=\operatorname{det}\left[P_{j-1}\left(x_{i}\right)\right] \operatorname{det}\left[\bar{Q}_{j-1}\left(x_{t}\right)\right] \tag{2.8}
\end{align*}
$$

Let

$$
\begin{equation*}
\sum_{j=0}^{n-1} P_{j}\left(x_{i}\right) \bar{Q}_{J}\left(x_{k}\right)=K_{n}\left(x_{i}, x_{k}\right) \tag{2.9}
\end{equation*}
$$

Then, in view of equations (2.6) and (2.7), we have

$$
\begin{align*}
& \int K_{n}(x, z) K_{n}(z, \dot{\xi}) \mathrm{d} z=K_{n}(x, \xi) \tag{2.10}\\
& \int K_{n}(x, x) \mathrm{d} x=n \tag{2.11}
\end{align*}
$$

and therefore, according to a theorem by Dyson (see, for example, [5], ch 8, section 8.10)

$$
\begin{equation*}
\int \operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, m} \mathrm{~d} x_{m}=(n-m+1) \operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, m-1} \tag{2.12}
\end{equation*}
$$

Hence, from equation (2.8)

$$
\begin{align*}
\int \mathrm{d} x_{n} \mathrm{~d} x_{n-1} & \ldots \mathrm{~d} x_{j+1} \int \mathrm{~d} y_{1} \ldots \mathrm{~d} y_{n} \prod_{j=1}^{n} w\left(x_{j}, y_{j}\right) \Delta(x) \Delta(y) \\
& \propto \int \mathrm{d} x_{n} \mathrm{~d} x_{n-1} \ldots \mathrm{~d} x_{p+1} \operatorname{det}\left[P_{j-1}\left(x_{i}\right)\right] \operatorname{det}\left[\bar{Q}_{j-1}\left(x_{i}\right)\right] \\
& =\int \mathrm{d} x_{n} \ldots \mathrm{~d} x_{p+1} \operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, n} \\
& =(n-p)!\operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, p} \tag{2.13}
\end{align*}
$$

Taking care of all the constants properly, one has

$$
\begin{equation*}
R_{p, 0}\left(x_{1}, \ldots, x_{p}\right)=\operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, p} \tag{2.14}
\end{equation*}
$$

The cluster function (or the cumulant or connected correlator!) $T_{p, 0}\left(x_{1}, \ldots, x_{p}\right)$ (for its definition, see, for example, [1], ch 5) can be written as

$$
\begin{equation*}
T_{p, 0}\left(x_{1}, \ldots, x_{p}\right)=\sum K_{n}\left(x_{1}, x_{2}\right) K_{n}\left(x_{2}, x_{3}\right) \ldots K_{n}\left(x_{p}, x_{1}\right) \tag{2.15}
\end{equation*}
$$

where the sum is taken over all distinct $(p-1)$! cyclic permutations of the indices $(1,2, \ldots, p)$.

Similar considerations will give the correlation function $R_{0, q}\left(y_{1}, \ldots, y_{q}\right)$ and the cluster function $T_{0, q}\left(y_{1}, \ldots, y_{q}\right)$.

If we disregard the eigenvalues of B, y_{1}, \ldots, y_{n}, then one can also compute the level spacing functions of $x_{1} \ldots, x_{n}$. To obtain the probability $E(0, I)$ that an interval I does not contain any of the x_{j}, one integrates over all x_{j} outside the interval I; which, according to the Binet-Cauchy formula (see, for example, [5], ch 3), can be written as

$$
\begin{equation*}
\frac{1}{n!}\left(\int-\int_{1}\right) \operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right] \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}=\operatorname{det}\left[G_{i, j}\right]_{i, j=0, \ldots, n-1} \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{i, j}=\left(\int-\int_{I}\right) \mathrm{d} x P_{i}(x) \bar{Q}_{j}(x)=\delta_{i, j}-\int_{I} P_{i}(x) \bar{Q}_{j}(x) \mathrm{d} x . \tag{2.17}
\end{equation*}
$$

To get the probability $E(r, I)$ that an interval I contains exactly r of the eigenvalues x_{j}, one can, as usual, introduce an extra variable z in the determinant above and differentiate partially with respect to this variable. Thus

$$
\begin{equation*}
E(r, I)=\left.\frac{1}{r!}\left(-\frac{\partial}{\partial z}\right)^{r} \operatorname{det}\left[\delta_{i, j}-z \int_{I} P_{i}(x) \bar{Q}_{j}(x) \mathrm{d} x\right]\right|_{z=1} . \tag{2.18}
\end{equation*}
$$

One can then take the limit $n \rightarrow \infty$, if one so desires, obtaining a Fredholm determinant whose kernel (see, for example, [1], ch 5) will be $K(x, y)=\lim _{n \rightarrow \infty} K_{n}(x, y)$ over the interval I.

3. Mixed correlation functions

When both p and q are positive, then one cannot replace $\operatorname{det}\left[\mathrm{e}^{-2 c x_{i} y_{j}}\right]$ in equation (1.6) by a single term as we did in section 2 . One way out of this difficulty is the following. If we can calculate

$$
\begin{equation*}
G(u ; v)=\int \prod_{j=1}^{n}\left(u\left(\xi_{j}\right) v\left(\eta_{j}\right)\right) F(\xi ; \eta) \mathrm{d} \xi_{1} \ldots \mathrm{~d} \xi_{n} \mathrm{~d} \eta_{1} \ldots \mathrm{~d} \eta_{n} \tag{3.1}
\end{equation*}
$$

in a closed form for arbitrary functions $u(\xi)$ and $v(\xi)$, by differentiating functionally several times with respect to $u(x)$ and $v(y)$, we then get $(F(\xi ; \eta)$ being symmetric in the variables ξ_{1}, \ldots, ξ_{n} and $\eta_{1}, \ldots, \eta_{n}$:

$$
\begin{equation*}
R_{p, q}\left(x_{1}, \ldots, x_{p} ; y_{1}, \ldots, y_{q}\right)=\left.\binom{n}{p}\binom{n}{q} \prod_{j=1}^{p} \frac{\delta}{\delta u\left(x_{j}\right)} \prod_{k=1}^{q} \frac{\delta}{\delta v\left(y_{k}\right)} G(u ; v)\right|_{u(\xi))=v\left(\eta_{j}\right)=1} \tag{3.2}
\end{equation*}
$$

With the integrations in equation (3.1) being performed over all the variables η_{j}, we can then replace $\operatorname{det}\left[\mathrm{e}^{-2 c \xi_{1}, \eta_{2}}\right]$ by $\exp \left(-2 c \sum_{j=1}^{n} \xi_{J} \eta_{J}\right)$ as in section 2 . The difficulty now is that when $u(\xi)$ and $v(\xi)$ are arbitrary functions, which is essential here, one cannot introduce orthogonal polynomials. However, as Dyson remarked [7], we actually do not need the integral (3.1) in any greater detail than its power series expansion when $u(\xi)$ and $v(\xi)$ are near unity. So let us put $u(\xi)=1+a(\xi)$ and $v(\xi)=1+b(\xi)$ and treat $a(\xi)$ and $b(\xi)$ as small quantities.

Therefore,

$$
\begin{align*}
& G(1+a ; 1+b)=f_{2} n!\int \prod_{j=1}^{n}\left\{\left(1+a\left(\xi_{j}\right)\right)\left(1+b\left(\eta_{j}\right)\right) w\left(\xi_{j}, \eta_{j}\right) \mathrm{d} \xi_{j} \mathrm{~d} \eta_{j}\right\} \Delta(\xi) \Delta(\eta) \\
& \quad \propto \int \prod_{j=1}^{n}\left\{\left(1+a\left(\xi_{j}\right)\right)\left(1+b\left(\eta_{j}\right)\right) w\left(\xi_{j}, \eta_{j}\right) \mathrm{d} \xi_{j} \mathrm{~d} \eta_{j}\right\} \operatorname{det}\left[P_{j-1}\left(\xi_{i}\right)\right] \operatorname{det}\left[Q_{j-1}\left(\eta_{i}\right)\right] \tag{3.3}
\end{align*}
$$

or, in view of equation (2.6) (and taking proper care of the constants),

$$
\begin{align*}
G(1+a ; 1+b) & =\sum_{(j)} \varepsilon_{()}\left(\delta_{0 . j_{0}}+c_{0, j_{0}}\right) \ldots\left(\delta_{n-1, j_{n-1}}+c_{n-1, j_{n-1}}\right) \\
& =\operatorname{det}\left[\delta_{j, k}+c_{j, k}\right] \tag{3.4}
\end{align*}
$$

where $(j)=\left(j_{0}, j_{1}, \ldots, j_{n-1}\right)$ is a permutation of $(0,1, \ldots, n-1), \varepsilon_{(j)}$ is its sign and

$$
\begin{equation*}
c_{j, k}=\int w(\xi, \eta)[a(\xi)+b(\eta)+a(\xi) b(\eta)] P_{J}(\xi) Q_{k}(\eta) \mathrm{d} \xi \mathrm{~d} \eta \tag{3.5}
\end{equation*}
$$

Expanding equation (3.4) in powers of $c_{j, k}$ and collecting terms, one gets

$$
\begin{align*}
& G(1+a ; 1+b)=1+\sum_{j=0}^{n-1} c_{j, j}+\frac{1}{2!} \sum_{j, k=0}^{n-1} \operatorname{det}\left[\begin{array}{cc}
c_{j, j} & c_{j, k} \\
c_{k, j} & c_{k, k}
\end{array}\right]+\cdots \\
&+\frac{1}{k!} \sum_{j_{1}, j_{2}, \ldots, j_{k}=0}^{n-1} \operatorname{det}\left[\begin{array}{ccc}
c_{j_{1}, j 1} & \ldots & c_{j_{1}, j_{k}} \\
\ldots & \ldots & \ldots \\
c_{j_{k}, j_{1}} & \ldots & c_{j_{k}, j_{k}}
\end{array}\right]+\cdots \tag{3.6}
\end{align*}
$$

To obtain the correlation function $R_{p, q}$, one has to differentiate equation (3.6) functionally with respect to $a\left(x_{1}\right), \ldots, a\left(x_{p}\right), b\left(y_{1}\right), \ldots, b\left(y_{q}\right)$ and then put $a\left(x_{j}\right)=b\left(y_{j}\right)=0$. Terms outside the range $(p+q) / 2 \leqslant k \leqslant p+q$ on the right-hand side of equation (3.6) will not contribute to $R_{p, q}$.

Thus,

$$
\begin{align*}
R_{1,1}(x ; y) & \left.\propto \frac{\delta}{\delta a(x)} \frac{\delta}{\delta b(y)}\left\{\sum_{j} c_{j, j}+\frac{1}{2!} \sum_{j, k}\left(c_{j, j} c_{k, k}-c_{j, k} c_{k, j}\right)\right\}\right|_{\alpha\left(\xi_{j}\right)=b\left(\eta_{j}\right)=0} \\
& =w(x, y) \sum_{j} P_{j}(x) Q_{j}(y)+\frac{1}{2!} \sum_{j, k} \operatorname{det}\left[\begin{array}{cc}
P_{j}(x) & \bar{P}_{j}(y) \\
P_{k}(x) & \bar{P}_{k}(y)
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
\bar{Q}_{j}(x) & Q_{j}(y) \\
\bar{Q}_{k}(x) & Q_{k}(y)
\end{array}\right] \tag{3.7}
\end{align*}
$$

where $\bar{Q}_{k}(x)$ is given by equation (2.7) and $\bar{P}_{k}(y)$ is given by a similar equation

$$
\begin{equation*}
\bar{P}_{k}(y)=\int P_{k}(x) w(x, y) \mathrm{d} x \tag{3.8}
\end{equation*}
$$

Note that $P_{j}(x)$ and $Q_{j}(x)$ are polynomials, while $\bar{P}_{j}(x)$ and $\bar{Q}_{j}(x)$ are, in general, not. Similarly,

$$
\begin{align*}
R_{2,1}\left(x_{1}, x_{2} ; y\right) & \propto \frac{\delta}{\delta a\left(x_{1}\right)} \frac{\delta}{\delta a\left(x_{2}\right)} \frac{\delta}{\delta b(y)}\left\{\frac{1}{2!} \sum_{j, k=0}^{n-1} \operatorname{det}\left[\begin{array}{cc}
c_{j, j} & c_{j, k} \\
c_{k, j} & c_{k, k}
\end{array}\right]\right. \\
& \left.+\frac{1}{3!} \sum_{j, k, \ell=0}^{n-1} \operatorname{det}\left[\begin{array}{lll}
c_{j, j} & c_{j, k} & c_{j, \ell} \\
c_{k, j} & c_{k, k} & c_{k, \ell} \\
c_{\ell, j} & c_{\ell, k} & c_{\ell, \ell}
\end{array}\right]\right\}\left.\right|_{a\left(\xi_{j}\right)=b\left(n_{j}\right)=0} \tag{3.9}
\end{align*}
$$

On rearranging, the first term gives
$\frac{1}{2!} \sum_{\alpha=1}^{2} w\left(x_{\alpha}, y\right) \sum_{j, k=0}^{n-1} \operatorname{det}\left[\begin{array}{ll}P_{j}\left(x_{\alpha}\right) & P_{j}\left(x_{3-\alpha}\right) \\ P_{k}\left(x_{\alpha}\right) & P_{k}\left(x_{3-\alpha}\right)\end{array}\right] \operatorname{det}\left[\begin{array}{ll}Q_{j}(y) & \bar{Q}_{j}\left(x_{3-\alpha}\right) \\ Q_{k}(y) & \bar{Q}_{k}\left(x_{3-\alpha}\right)\end{array}\right]$
while the second term gives

$$
\frac{1}{3!} \sum_{j, k, \ell=0}^{n-1} \operatorname{det}\left[\begin{array}{lll}
P_{j}\left(x_{1}\right) & P_{j}\left(x_{2}\right) & \bar{P}_{J}(y) \tag{3.11}\\
P_{k}\left(x_{1}\right) & P_{k}\left(x_{2}\right) & \bar{P}_{k}(y) \\
P_{\ell}\left(x_{1}\right) & P_{\ell}\left(x_{2}\right) & \bar{P}_{\ell}(y)
\end{array}\right] \operatorname{det}\left[\begin{array}{lll}
\bar{Q}_{j}\left(x_{1}\right) & \bar{Q}_{j}\left(x_{2}\right) & Q_{j}(y) \\
\bar{Q}_{k}\left(x_{1}\right) & \bar{Q}_{k}\left(x_{2}\right) & Q_{k}(y) \\
\bar{Q}_{\ell}\left(x_{1}\right) & \bar{Q}_{\ell}\left(x_{2}\right) & Q_{\ell}(y)
\end{array}\right]
$$

so that $R_{2,1}\left(x_{1}, x_{2} ; y\right)$ is proportional to the sum of expressions (3.10) and (3.11).
The next correlation function $R_{2}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)$ is

$$
\begin{align*}
R_{2,2}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right) & \propto \frac{\delta}{\delta a\left(x_{1}\right)} \frac{\delta}{\delta a\left(x_{2}\right)} \frac{\delta}{\delta b\left(y_{1}\right)} \frac{\delta}{\delta b\left(y_{2}\right)} \\
& \times\left\{\frac{1}{2!} \operatorname{det}\left[\begin{array}{cc}
c_{j, j} & c_{j, k} \\
c_{k, j} & c_{k, k}
\end{array}\right]+\frac{1}{3!} \operatorname{det}\left[\begin{array}{ccc}
c_{j, j} & c_{j, k} & c_{j, \ell} \\
c_{k, j} & c_{k, k} & c_{k, \ell} \\
c_{\ell, j} & c_{\ell, k} & c_{\ell, \ell}
\end{array}\right]\right. \\
& \left.+\frac{1}{4!} \operatorname{det}\left[\begin{array}{cccc}
c_{j, j} & c_{j, k} & c_{j, \ell} & c_{j, m} \\
\cdots & \cdots & \cdots & \cdots \\
c_{m, j} & c_{m, k} & c_{m, \ell} & c_{m, m}
\end{array}\right]\right\}\left.\right|_{a\left(\xi_{j}\right)=b\left(\eta_{j}\right)=0} \tag{3.12}
\end{align*}
$$

The first term gives the contribution
$\frac{1}{2!} \operatorname{det}\left[\begin{array}{ll}w\left(x_{1}, y_{1}\right) & w\left(x_{1}, y_{2}\right) \\ w\left(x_{2}, y_{1}\right) & w\left(x_{2}, y_{2}\right)\end{array}\right] \sum_{j, k} \operatorname{det}\left[\begin{array}{ll}P_{j}\left(x_{1}\right) & P_{j}\left(x_{2}\right) \\ P_{k}\left(x_{1}\right) & P_{k}\left(x_{2}\right)\end{array}\right] \operatorname{det}\left[\begin{array}{ll}Q_{j}\left(y_{1}\right) & Q_{j}\left(y_{2}\right) \\ Q_{k}\left(y_{1}\right) & Q_{k}\left(y_{2}\right)\end{array}\right]$.
The second term gives

$$
\begin{align*}
& \frac{1}{3!} \sum_{\alpha, \beta=1}^{2} w\left(x_{\alpha}, y_{\beta}\right) \sum_{j, k, \ell=0}^{n-1} \operatorname{det}\left[\begin{array}{lll}
P_{j}\left(x_{3-\alpha}\right) & \bar{P}_{j}\left(y_{3-\beta}\right) & P_{j}\left(x_{\alpha}\right) \\
P_{k}\left(x_{3-\alpha}\right) & \vec{P}_{k}\left(y_{3-\beta}\right) & P_{k}\left(x_{\alpha}\right) \\
P_{\ell}\left(x_{3-\alpha}\right) & \bar{P}_{\ell}\left(y_{3-\beta}\right) & P_{\ell}\left(x_{\alpha}\right)
\end{array}\right] \\
& \times \operatorname{det}\left[\begin{array}{lll}
\bar{Q}_{j}\left(x_{3-\alpha}\right) & Q_{j}\left(y_{3-\beta}\right) & Q_{j}\left(y_{\alpha}\right) \\
\bar{Q}_{k}\left(x_{3-\alpha}\right) & Q_{k}\left(y_{3-\beta}\right) & Q_{k}\left(y_{\alpha}\right) \\
\bar{Q}_{\ell}\left(x_{3-\alpha}\right) & Q_{\ell}\left(y_{3-\beta}\right) & Q_{\ell}\left(y_{\alpha}\right)
\end{array}\right] . \tag{3.14}
\end{align*}
$$

The third term gives

$$
\begin{align*}
\frac{1}{4!} \sum_{j, k, \ell_{1} m=0}^{n-1} \operatorname{det} & {\left[\begin{array}{cccc}
P_{j}\left(x_{1}\right) & P_{j}\left(x_{2}\right) & \bar{P}_{j}\left(y_{1}\right) & \bar{P}_{j}\left(y_{2}\right) \\
P_{k}\left(x_{1}\right) & P_{k}\left(x_{2}\right) & \bar{P}_{k}\left(y_{1}\right) & \bar{P}_{k}\left(y_{2}\right) \\
P_{\ell}\left(x_{1}\right) & P_{\ell}\left(x_{2}\right) & \bar{P}_{k}\left(y_{1}\right) & \bar{P}_{\ell}\left(y_{2}\right) \\
P_{m}\left(x_{1}\right) & P_{m}\left(x_{2}\right) & \bar{P}_{m}\left(y_{1}\right) & \bar{P}_{m}\left(y_{2}\right)
\end{array}\right] } \\
& \times \operatorname{det}\left[\begin{array}{llll}
\bar{Q}_{j}\left(x_{1}\right) & \bar{Q}_{j}\left(x_{2}\right) & Q_{j}\left(y_{1}\right) & Q_{J}\left(y_{2}\right) \\
\bar{Q}_{k}\left(x_{1}\right) & \bar{Q}_{k}\left(x_{2}\right) & Q_{k}\left(y_{1}\right) & Q_{k}\left(y_{2}\right) \\
\bar{Q}_{\ell}\left(x_{1}\right) & \bar{Q}_{\ell}\left(x_{2}\right) & Q_{\ell}\left(y_{1}\right) & Q_{\ell}\left(y_{2}\right) \\
\bar{Q}_{m}\left(x_{1}\right) & \bar{Q}_{m}\left(x_{2}\right) & Q_{m}\left(y_{1}\right) & Q_{m}\left(y_{2}\right)
\end{array}\right] . \tag{3.15}
\end{align*}
$$

$R_{2,2}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)$ is proportional to the sum of the last three terms.
The general procedure, though somewhat lengthy, is now straightforward.
One point to note is that eigenvalues belonging to the same matrix 'repel' each other, while eigenvalues of A do not 'repel' those of B.

One can also obtain the spacing functions of the two sets of eigenvalues. To obtain the probability $E\left(0, I_{1} ; 0, I_{2}\right)$ that an interval I_{1} does not contain any eigenvalues x_{j} of matrix A and an interval I_{2} does not contain any eigenvalues y_{j} of matrix B (the intervals I_{1} and I_{2} may or may not have any overlap), one takes

$$
\begin{align*}
& u(x)= \begin{cases}0 & \text { if } x \in I_{1} \\
1 & \text { otherwise }\end{cases} \tag{3.16}\\
& v(y)= \begin{cases}0 & \text { if } y \in I_{2} \\
1 & \text { otherwise }\end{cases} \tag{3.17}
\end{align*}
$$

in equation (3.1). This gives

$$
\begin{align*}
E\left(0, I_{1} ; 0, I_{2}\right) & \propto \frac{1}{n!} \int \prod_{j=1}^{n}\left\{u\left(x_{j}\right) v\left(y_{j}\right) w\left(x_{j}, y_{j}\right) \mathrm{d} x_{j} \mathrm{~d} y_{j}\right\} \operatorname{det}\left[P_{j-1}\left(x_{i}\right)\right] \operatorname{det}\left[Q_{j-1}\left(y_{i}\right)\right] \\
& =\operatorname{det}\left[\hat{G}_{i j}\left(I_{1} ; I_{2}\right)\right] \tag{3.18}
\end{align*}
$$

where

$$
\begin{align*}
\hat{G}_{i j}\left(I_{1} ; I_{2}\right)= & \int P_{i}(x) Q_{j}(y) w(x, y) u(x) v(y) \mathrm{d} x \mathrm{~d} y \\
= & \delta_{i, j}-\int_{I_{1}} \mathrm{~d} x P_{1}(x) \bar{Q}_{j}(x)-\int_{I_{2}} \mathrm{~d} y \bar{P}_{i}(y) Q_{j}(y) \\
& +\int_{I_{1}} \mathrm{~d} x \int_{I_{2}} \mathrm{~d} y P_{i}(x) Q_{j}(y) w(x, y) \tag{3.19}
\end{align*}
$$

If one wants to obtain the probability $E\left(r, I_{1} ; s, I_{2}\right)$ that an interval I_{1} contains exacly r eigenvalues x_{j} of matrix A and an interval I_{2} contains exacly s eigenvalues y_{j} of matrix B, then one introduces two extra variables z_{1} and z_{2} in equation (3.19)

$$
\begin{gather*}
\hat{G}_{i j}\left(z_{1}, I_{3} ; z_{2}, I_{2}\right)=\delta_{i, j}-z_{1} \int_{I_{1}} \mathrm{~d} x P_{i}(x) \bar{Q}_{j}(x)-z_{2} \int_{I_{2}} \mathrm{~d} y \bar{P}_{i}(y) Q_{j}(y) \\
+z_{1} z_{2} \int_{I_{1}} \mathrm{~d} x \int_{I_{2}} \mathrm{~d} y P_{i}(x) Q_{j}(y) w(x, y) \tag{3.20}
\end{gather*}
$$

so that
$E\left(r, I_{1} ; s, I_{2}\right)=\left.\frac{1}{r!}\left(-\frac{\partial}{\partial z_{1}}\right)^{r} \frac{1}{s!}\left(-\frac{\partial}{\partial z_{2}}\right)^{s} \operatorname{det}\left[\hat{G}_{1}\left(z_{1}, I_{1} ; z_{2}, I_{2}\right)\right]\right|_{z_{1}=z_{2}=1}$.
To take the limit $n \rightarrow \infty$, it will be convenient to write $\hat{G}_{i j}$ as

$$
\begin{gather*}
\hat{G}_{i j}=\delta_{i, j}-z_{1} \int_{I_{1}} \mathrm{~d} x P_{1}(x) \bar{Q}_{j}(x)-z_{2} \int_{-\infty}^{\infty} \mathrm{d} x \int_{I_{2}} \mathrm{~d} y P_{t}(x) w(x, y) Q_{j}(y) \\
 \tag{3.22}\\
+z_{1} z_{2} \int_{J_{1}} \mathrm{~d} x \int_{I_{2}} \mathrm{~d} y P_{1}(x) w(x, y) Q_{j}(y)
\end{gather*}
$$

Now consider the integral equation
$\lambda f(x)=z_{1} \int_{I_{1}}\left[K_{n}(x, y)-z_{2} \bar{K}_{n}(x, y)\right] f(y) \mathrm{d} y+z_{2} \int_{-\infty}^{\infty} \bar{K}_{n}(x, y) f(y) \mathrm{d} y$
where $K_{n}(x, y)$ is given by equation (2.9), and

$$
\begin{equation*}
\bar{K}_{n}(x, y)=\sum_{i=0}^{n-1} P_{i}(x) \int_{I_{2}} Q_{i}(\xi) w(y, \xi) \mathrm{d} \xi . \tag{3.24}
\end{equation*}
$$

The eigenfunction $f(x)$ is necessarily of the form

$$
\begin{equation*}
f(x)=\sum_{i=0}^{n-1} k_{i} P_{i}(x) \tag{3.25}
\end{equation*}
$$

with certain constants k_{i}. Substituting (3.25) into equation (3.23) and remembering that $P_{i}(x)$ are linearly independent polynomials, we get

$$
\begin{gather*}
\sum_{j}\left\{\lambda \delta_{i, j}-z_{1} \int \mathrm{~d} y \bar{Q}_{i}(y) P_{j}(y)-z_{2} \int_{-\infty}^{\infty} \mathrm{d} y P_{j}(y) \int_{I_{2}} \mathrm{~d} \xi Q_{i}(\xi) w(y, \xi)\right. \\
\left.+z_{1} z_{2} \int_{L_{1}} \mathrm{~d} y P_{j}(y) \int_{I_{2}} \mathrm{~d} \xi Q_{i}(\xi) w(y, \xi)\right\} k_{j}=0 . \tag{3.26}
\end{gather*}
$$

Equation (3.26) has a non-zero solution if the coefficient matrix on the left-hand side is singular. This gives an algebraic equation of order n in λ having n roots $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}$; so that one can write

$$
\begin{equation*}
\operatorname{det}\left[(\lambda-1) \delta_{i, j}+\hat{G}_{i j}\left(z_{1}, I_{1} ; z_{2}, I_{2}\right)\right]=\prod_{i=0}^{n-1}\left(\lambda-\lambda_{i}\right) \tag{3.27}
\end{equation*}
$$

Setting $\lambda=1$ in (3.27), we finally get

$$
\begin{equation*}
\operatorname{det}\left[\hat{G}_{i j}\right]=\prod_{i=0}^{n-1}\left(1-\lambda_{i}\right) \tag{3.28}
\end{equation*}
$$

Thus, to obtain the limit of $\operatorname{det}\left[\hat{G}_{i j}\right]$ as $n \rightarrow \infty$, one has to take the limits of $K_{n}(x, y)$ and $\bar{K}_{n}(x, y)$ and then study limiting integral equation (3.23).

The same method can be used to find correlation functions of eigenvalues of three or more matrices coupled in a chain. For example, if equation (1.4) is replaced by

$$
\exp \left[-\operatorname{tr}\left\{U(A)+V(B)+W(C)+2 c_{1} A B+2 c_{2} B C\right\}\right]
$$

then one has only to replace equations (2.3) and (2.6) by

$$
w(x, y, z)=\exp \left[-U(x)-V(y)-W(z)-2 c_{1} x y-2 c_{2} y z\right]
$$

and

$$
\int w(x, y, z) P_{j}(x) Q_{k}(z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\delta_{j, k}
$$

To obtain the correlation functions, replace $c_{J, k}$ in equation (3.5) by
$c_{j, k}=\int w(x, y, z)\left[\left(1+a_{1}(x)\right)\left(1+a_{2}(y)\right)\left(1+a_{3}(z)\right)-1\right] P_{j}(x) Q_{k}(z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$
differentiate functionally with respect to a_{1}, a_{2}, a_{3} and, finally, set $a_{1}\left(x_{j}\right)=a_{2}\left(y_{j}\right)=$ $a_{3}\left(z_{j}\right)=0$. Similarly, to get the spacing functions, one replaces equation (3.21) by

$$
\begin{align*}
& E\left(r_{1}, I_{1} ; r_{2}, I_{2} ; r_{3}, I_{3}\right) \\
& \quad=\left.\frac{1}{r_{1}!}\left(\frac{-\partial}{\partial z_{1}}\right)^{r_{1}} \frac{1}{r_{2}!}\left(\frac{-\partial}{\partial z_{2}}\right)^{r_{2}} \frac{1}{r_{3}!}\left(\frac{-\partial}{\partial z_{3}}\right)^{r_{3}} \operatorname{det}\left[G_{i j}\left(z_{1}, I_{1} ; z_{2}, I_{2} ; z_{3}, I_{3}\right)\right]\right|_{z_{1}=z_{2}=z_{3}=1}
\end{align*}
$$

with an appropriate expression for $G_{i j}\left(z_{1}, I_{1} ; z_{2}, I_{2} ; z_{3}, I_{3}\right)$.

4. A chain of coupled matrices

Consider a set of matrices coupled in a chain, i.e. let the joint probability density of the elements of $p n \times n$ Hermitian matrices $A_{1}, A_{2}, \ldots, A_{p}$ be proportional to

$$
\begin{equation*}
\exp \left\{-\sum_{j=1}^{p} \operatorname{tr}\left[V_{j}\left(A_{j}\right)+\alpha_{j} A_{j} A_{j+1}\right]\right\} \quad \alpha_{p} \equiv 0 \tag{4.1}
\end{equation*}
$$

Then the joint probability density of the set of their eigenvalues can be deduced to be (see, for example, [5], ch 13)

$$
\begin{equation*}
\exp \left\{-\sum_{j=1}^{p} \sum_{k=1}^{n} V_{j}\left(x_{j, k}\right)\right\} \prod_{j=1}^{n-1} \operatorname{det}\left[\exp \left(-\alpha_{j} x_{j, k} x_{j+1, \ell}\right)\right]_{k, \ell=1, \ldots, n} \Delta\left(x_{1}\right) \Delta\left(x_{p}\right) \tag{4.2}
\end{equation*}
$$

where $x_{j, 1}, \ldots, x_{j, n}$ are the eigenvalues of A_{j}.
If one is interested in the correlations of the eigenvalues of one particular matrix, say A_{2}, disregarding the eigenvalues of all the other matrices, then a little reflection over the anti-symmetry of various factors will show that one can replace each of the determinants $\operatorname{det}\left[\exp \left(-\alpha_{j} x_{j, k} x_{j+1, \ell}\right)\right]$ by its diagonal term. In other words, for the correlations among the eigenvalues of any one particular matrix, disregarding those of others, it is permissible to replace expression (4.2) by

$$
\begin{equation*}
(n!)^{p-1} \exp \left\{-\sum_{k=1}^{n} \sum_{j=1}^{p}\left[V_{j}\left(x_{j, k}\right)+\alpha_{j} x_{j, k} x_{j+1, k}\right]\right\} \Delta\left(x_{1}\right) \Delta\left(x_{p}\right) \tag{4.3}
\end{equation*}
$$

One will then choose polynomials $P_{j}(x)$ and $Q_{J}(x)$ such that

$$
\begin{equation*}
\int \exp \left\{-\sum_{q=1}^{p}\left[V_{q}\left(y_{q}\right)+\alpha_{q} y_{q} y_{q+1}\right]\right\} P_{j}\left(y_{1}\right) Q_{k}\left(y_{p}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p}=\delta_{j, k} \tag{4.4}
\end{equation*}
$$

To study the correlations of the eigenvalues of matrix A_{2}, say, one then defines

$$
\begin{equation*}
\hat{P}_{k}(x)=\int \exp \left\{-V_{1}(y)-V_{2}(x)-\alpha_{1} y x\right\} P_{k}(y) \mathrm{d} y \tag{4.5}
\end{equation*}
$$

and

$$
\begin{gather*}
\hat{Q}_{k}(x)=\int \exp \left\{-V_{3}\left(y_{3}\right)-\cdots-V_{p}\left(y_{p}\right)-\alpha_{2} x y_{3}-\alpha_{3} y_{3} y_{4}-\cdots-\alpha_{p-1} y_{p-1} y_{p}\right\} \\
\times Q_{k}\left(y_{p}\right) \mathrm{d} y_{3} \ldots \mathrm{~d} y_{p} \tag{4.6}
\end{gather*}
$$

These $\hat{P}_{k}(x)$ and $\hat{Q}_{k}(x)$ are no longer polynomials in general, but they are orthogonal, and can be used with as much convenience. Thus, for example, the m-point correlation function for the eigenvalues of matrix A_{2} is

$$
\begin{equation*}
R_{m}\left(x_{2,1}, \ldots, x_{2, m}\right)=\operatorname{det}\left[\hat{K}_{n}\left(x_{2, i}, x_{2, j}\right)\right]_{l, j=1, \ldots, m} \tag{4.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{K}_{n}(x, y)=\sum_{j=0}^{n-1} \hat{P}_{j}(x) \hat{Q}_{j}(y) \tag{4.8}
\end{equation*}
$$

The spacing functions are similarly given by the partial derivatives of the determinant

$$
\begin{equation*}
\operatorname{det}\left[\delta_{i, j}-z \int_{I} \hat{P}_{i}(x) \hat{Q}_{j}(x) \mathrm{d} x\right] \tag{4.9}
\end{equation*}
$$

see equation (2.18).
If one is interested in the mixed correlations or in the spacing functions of eigenvalues of (any) two matrices in the coupled chain of p matrices, a similar procedure reduces it to the study of correlations of two coupled matrices from section 3.

5. An example

Consider the case $V(x)=x^{2}$. Equation (1.5) now takes the form

$$
\begin{equation*}
F(x ; y)=f_{2} \exp \left\{-\sum_{j=1}^{n}\left\{U\left(x_{j}\right)+y_{j}^{2}\right\}\right\} \operatorname{det}\left[-2 c x_{i} y_{j}\right] \Delta(x) \Delta(y) \tag{5.1}
\end{equation*}
$$

Since for any polynomial $Q_{k}(y)$ of degree $k, \int \exp \left[-(y+c x)^{2}\right] Q_{k}(y) \mathrm{d} y$ is also a polynomial of the same degree k, equation (2.6) can be replaced by

$$
\begin{equation*}
\int \exp \left(-U(x)+c^{2} x^{2}\right) P_{j}(x) P_{k}(x) \mathrm{d} x=\delta_{j, k} \tag{5.2}
\end{equation*}
$$

Thus, $P_{j}(x)$ are orthogonal polynomials with weight exp $\left[-U(x)+c^{2} x^{2}\right]$

$$
\begin{equation*}
\bar{Q}_{J}(x)=\exp \left[-U(x)+c^{2} x^{2}\right] P_{J}(x) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{n}(x, y)=\exp \left[-U(x)+c^{2} x^{2}\right] \sum_{j=0}^{n-1} P_{j}(x) P_{j}(y) \tag{5.4}
\end{equation*}
$$

However, the expressions for $\bar{P}_{j}(x), \bar{K}_{n}(x, y)$ and correlation functions $R_{p, q}$ for $p, q>0$ are not much simpler.

Moreover, if $U(x)=x^{2}$, then $P_{j}(x) \propto H_{j}\left(x \sqrt{1-c^{2}}\right)$, where H_{j} are Hermite polynomials, and the calculation can be completed.

Acknowledgments

We are thankful to our colleagues B Eynard, G Mahoux, I Kostov, V Kazakov and J-M Normand for valuable discussions.

References

[1] See, for example, Mehta M L 1991 Random Matrices (San Diego, CA: Academic) ch 3
[2] Mahoux G and Mehta ML 1991 J. Physique 1 1093-108
[3] Itzykson C and Zuber J B 1980 J. Math. Phys. 21 411-21
[4] Mehta M L 1981 Commun. Math. Phys. 79 327-40
[5] Mehta M L 1989 Matrix Theory (Les Ulis: Les Editions de Physique)
[6] Daul J-M, Kazakov V A and Kostov I K 1993 Nucl. Phys. B 409 331-8
[7] Dyson F J 1962 J. Math. Phys. 3 166-75

[^0]: \dagger Member of the Centre National de la Recherche Scientifique, France.
 \ddagger Laboratoire de la Direction des Sciences de la Matière du Commissariat à l'Energle Atomique.

